IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v564y2021ics0378437120308621.html
   My bibliography  Save this article

Exact properties of SIQR model for COVID-19

Author

Listed:
  • Odagaki, Takashi

Abstract

The SIQR model is reformulated where compartments for infected and quarantined are redefined so as to be appropriate to COVID-19, and exact properties of the model are presented. It is shown that the maximum number of infected at large depends strongly on the quarantine rate and that the quarantine measure is more effective than the lockdown measure in controlling the pandemic. The peak of the number of quarantined patients is shown to appear some time later than the time that the number of infected becomes maximum. On the basis of the expected utility theory, a theoretical framework to find out an optimum strategy in the space of lockdown measure and quarantine measure is proposed for minimizing the maximum number of infected and for controlling the outbreak of pandemic at its early stage.

Suggested Citation

  • Odagaki, Takashi, 2021. "Exact properties of SIQR model for COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
  • Handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308621
    DOI: 10.1016/j.physa.2020.125564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308621
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Bo & Yu, Zhenhua & Cai, Yuanli, 2022. "The impact of vaccination on the spread of COVID-19: Studying by a mathematical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    2. Pascoal, R. & Rocha, H., 2022. "Population density impact on COVID-19 mortality rate: A multifractal analysis using French data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.