IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v560y2020ics037843712030580x.html
   My bibliography  Save this article

Thermodynamic properties of stable and unstable vapor shells around lyophobic nanoparticles

Author

Listed:
  • Shchekin, Alexander K.
  • Gosteva, Liubov A.
  • Lebedeva, Tatiana S.

Abstract

Existence of stable and unstable spherical shell-like vapor interlayers (or concentric nanobubbles) near lyophobic surfaces has been proved and their thermodynamic properties have been studied within the square gradient density functional theory. The equilibrium density profiles around lyophobic nanoscopic particles (without and with electric charge) in a stretched argon-like liquid have been computed. The combination of the Carnahan–Starling and the mean-field models for fluid–fluid interaction and the total Lennard-Jones potential of interaction between the particle and fluid molecule have been used. The lyophobicity of the particle has been controlled by the energy parameter for attraction of molecules of the particle and the fluid molecules. This parameter has been taken considerably smaller than the energy parameter for fluid–fluid molecular attraction. As a result, two equilibrium radial density profiles corresponding to two concentric vapor shells around particle were found at a fixed value of the condensate chemical potential below its value for the flat equilibrium. It was shown that the smaller shell is related to the minimum of the work of the vapor shell formation and represents a stable nanobubble, while the larger shell corresponds to the maximum of this work and refers to the unstable critical nanobubble. The equimolecular radii of the stable and unstable concentric nanobubbles increase with the radius of the core particle. The curve of the dependence of the chemical potential of fluid molecules in the bubble with the lyophobic core particle on the bubble radius has a minimum, below which heterogeneous nucleation of bubbles becomes thermodynamically barrierless. The appearance of the electric charge on the particle shifts the minimum of the condensate chemical potential deeper and inhibits bubble nucleation. The dependence of the bubble surface tension on the radius of the equimolecular dividing surface and the charge of the particle has been found for bubble at heterogeneous nucleation and compared with that for bubble and droplet at homogeneous nucleation and droplet at heterogeneous nucleation on lyophilic particle.

Suggested Citation

  • Shchekin, Alexander K. & Gosteva, Liubov A. & Lebedeva, Tatiana S., 2020. "Thermodynamic properties of stable and unstable vapor shells around lyophobic nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
  • Handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030580x
    DOI: 10.1016/j.physa.2020.125105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030580X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030580x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.