IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v552y2020ics0378437119312257.html
   My bibliography  Save this article

Micro-reversibility and thermalization with collisional baths

Author

Listed:
  • Ehrich, Jannik
  • Esposito, Massimiliano
  • Barra, Felipe
  • Parrondo, Juan M.R.

Abstract

Micro-reversibility plays a central role in thermodynamics and statistical mechanics. It is used to prove that systems in contact with a thermal bath relax to canonical ensembles. However, a problem arises when trying to reproduce this proof for classical and quantum collisional baths, i.e. particles at equilibrium interacting with a localized system via collisions. In particular, micro-reversibility appears to be broken and some models do not thermalize when interacting with Maxwellian particles. We clarify these issues by showing that micro-reversibility needs the invariance of evolution equations under time reversal plus the conservation of phase space volume in classical and semiclassical scenarios. Consequently, all canonical variables must be considered to ensure thermalization. This includes the position of the incident particles which maps their Maxwellian distribution to the effusion distribution. Finally, we show an example of seemingly plausible collision rules that do not conserve phase-space volume, and consequently violate the second law.

Suggested Citation

  • Ehrich, Jannik & Esposito, Massimiliano & Barra, Felipe & Parrondo, Juan M.R., 2020. "Micro-reversibility and thermalization with collisional baths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
  • Handle: RePEc:eee:phsmap:v:552:y:2020:i:c:s0378437119312257
    DOI: 10.1016/j.physa.2019.122108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312257
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:552:y:2020:i:c:s0378437119312257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.