IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics037843712030008x.html
   My bibliography  Save this article

The effect of nozzle geometry on the turbulence evolution in an axisymmetric jet flow: A focus on fractals

Author

Listed:
  • Seo, Yongwon
  • Ko, Haeng Sik
  • Son, Sangyoung

Abstract

Multifractal modeling has originated from the study of turbulence to reproduce scale-invariant variations of the energy flux in different scales. Turbulent eddies partition themselves into finer ones in a multiplicative process that produces a population spread over a domain. The population generated is a union of subsets, where each subset is fractal with its own fractal dimension. In this study, we compare the multifractal exponents of jet turbulence intensities obtained through numerical simulation. Turbulence intensities were obtained from numerical jet discharge experiments based on Reynolds-Averaged Navier–Stokes (RANS) equations, where two types of nozzle geometry and two statistical turbulent closure models (i.e., k-ε model and the k-ω model) were tested. The simulation results by two closure models demonstrate in common that the RANS model reproduced hydraulic properties such as transversal velocity profile successfully compared to an analytical solution, but exhibit a limitation for reproducing the turbulence intensity decay in the longitudinal direction. Meanwhile, a common multifractal spectrum turns out to exist for turbulence intensity obtained from numerical simulation based on a statistically-averaged turbulence model. While two different turbulence models produced almost identical transverse velocity profiles, multifractal characteristics are quite distinct; the minimum Lipschitz–Hölder exponent (αmin) and entropy dimension (α1) are dependent on the turbulence as well as outfall nozzle geometry. Consequently, it is demonstrated that the multifractal exponents capture the difference in turbulence structures of hierarchical turbulence intensities produced with different experimental conditions.

Suggested Citation

  • Seo, Yongwon & Ko, Haeng Sik & Son, Sangyoung, 2020. "The effect of nozzle geometry on the turbulence evolution in an axisymmetric jet flow: A focus on fractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s037843712030008x
    DOI: 10.1016/j.physa.2020.124145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030008X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s037843712030008x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.