IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v548y2020ics0378437119321570.html
   My bibliography  Save this article

K-ϵ-L model in turbulent superfluid helium

Author

Listed:
  • Sciacca, Michele
  • Jou, David
  • Mongiovì, Maria Stella

Abstract

We generalize the K−ϵ model of classical turbulence to superfluid helium. In a classical viscous fluid the phenomenological eddy viscosity characterizing the effects of turbulence depends on the turbulent kinetic energy K and the dissipation function ϵ, which are mainly related to the fluctuations of the velocity field and of its gradient. In superfluid helium, instead, we consider the necessary coefficients for describing the effects of classical and quantum turbulence, involving fluctuations of the velocity, the heat flux, and the vortex line density of the quantized vortex lines. By splitting the several fields into a time-average part and a fluctuating part, some expressions involving the second moments of the turbulent fluctuations appear in the evolution equations for the average quantities. As in the K−ϵ model, a practical way of closing such equations is to tentatively express such fluctuating terms as a function of the average quantities. In this context we propose how the turbulent coefficients so introduced could depend on the second moments of the fluctuations of v, q and L (respectively denoted as K, Kq and KL), and on their respective dissipation functions (related to the second moments of their gradients) ϵ, ϵq and ϵL.

Suggested Citation

  • Sciacca, Michele & Jou, David & Mongiovì, Maria Stella, 2020. "K-ϵ-L model in turbulent superfluid helium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  • Handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321570
    DOI: 10.1016/j.physa.2019.123885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321570
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher M. Teixeira, 1998. "Incorporating Turbulence Models into the Lattice-Boltzmann Method," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(08), pages 1159-1175.
    2. Sancho, P. & Llebot, J.E., 1994. "Thermodynamic entropy and turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 205(4), pages 623-633.
    3. Ansumali, Santosh & Karlin, Iliya V. & Succi, Sauro, 2004. "Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 379-394.
    4. Saluto, L. & Jou, D. & Mongiovì, M.S., 2014. "Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 272-280.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lätt, Jonas & Chopard, Bastien & Succi, Sauro & Toschi, Federico, 2006. "Numerical analysis of the averaged flow field in a turbulent lattice Boltzmann simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 6-10.
    2. Patil, D.V., 2013. "Chapman–Enskog analysis for finite-volume formulation of lattice Boltzmann equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2701-2712.
    3. Premnath, Kannan N. & Pattison, Martin J. & Banerjee, Sanjoy, 2009. "Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2640-2658.
    4. Avallone, Francesco & Ragni, Daniele & Casalino, Damiano, 2020. "On the effect of the tip-clearance ratio on the aeroacoustics of a diffuser-augmented wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 1317-1327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.