IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v548y2020ics0378437119321351.html
   My bibliography  Save this article

Mitigation of malicious attacks on structural balance of signed networks

Author

Listed:
  • Ma, Lijia
  • Zhang, Xiao
  • Mao, Fubing
  • Cai, Shubin
  • Lin, Qiuzhen
  • Chen, Jianyong
  • Wang, Shanfeng

Abstract

The studies of malicious attacks have received great attention due to their catastrophic damages on potential functions of complex networks. An initial attack first causes the failures of the attacked elements (like nodes and edges), and then those failures may trigger a cascade of failures, resulting in the catastrophic damages on the functions (like the largest connected topology and the community structures) of the networks. Previous methods, however, mainly focus on the impacts of malicious attacks on unsigned networks, and signed networks with conflicting relationships have more complex functions than unsigned counterparts. In this paper, we study the impacts of malicious attacks on the structural balance of signed networks which reflects the potentially functional conflicts and tensions in the networks. First, we model malicious attacks as a two-level targeted one: the small-scale node attacks and large-scale cluster attacks, and analyze the failures of the structural balance of signed networks during the attacks. Second, we propose a balance robustness index to evaluate the functional resilience of signed networks to those failures. Finally, to mitigate the balance failures, we present a protection technique with six strategies to protect a small fraction of influential nodes from malicious attacks. Experiments on synthetic data and real signed networks show that their structural balance is fragile to targeted attacks, but their robustness can be improved greatly by protecting a small fraction of influential nodes.

Suggested Citation

  • Ma, Lijia & Zhang, Xiao & Mao, Fubing & Cai, Shubin & Lin, Qiuzhen & Chen, Jianyong & Wang, Shanfeng, 2020. "Mitigation of malicious attacks on structural balance of signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  • Handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321351
    DOI: 10.1016/j.physa.2019.123841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321351
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Wang, Xingyuan & Zhou, Wenjie & Li, Rui & Cao, Jianye & Lin, Xiaohui, 2018. "Improving robustness of interdependent networks by a new coupling strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1075-1080.
    3. Weiping Wang & Saini Yang & H. Eugene Stanley & Jianxi Gao, 2019. "Local floods induce large-scale abrupt failures of road networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    5. Wu, Jiajing & Zeng, Junwen & Chen, Zhenhao & Tse, Chi K. & Chen, Bokui, 2018. "Effects of traffic generation patterns on the robustness of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 871-877.
    6. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    7. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Hongzhong & Qi, Mingze & Li, Mengjun & Ge, Bingfeng, 2021. "Limited cognitive adjustments in signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Liu & Xiangke Liao & Shanshan Li & Si Zheng & Bin Lin & Jingying Zhang & Lisong Shao & Chenlin Huang & Liquan Xiao, 2017. "On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    2. Garas, Antonios & Lapatinas, Athanasios, 2017. "The role of consumer networks in firmsÂ’ multi-characteristics competition and market share inequality," Structural Change and Economic Dynamics, Elsevier, vol. 43(C), pages 76-86, December.
    3. Wang, Tao & Cheng, Heming & Wang, Xiaoxia, 2020. "A link addition method based on uniformity of node degree in interdependent power grids and communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Kai Gong & Jia-Jian Wu & Ying Liu & Qing Li & Run-Ran Liu & Ming Tang, 2019. "The Effective Healing Strategy against Localized Attacks on Interdependent Spatially Embedded Networks," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    5. Peng, Peng & Poon, Jessie P.H. & Yang, Yu & Lu, Feng & Cheng, Shifen, 2019. "Global oil traffic network and diffusion of influence among ports using real time data," Energy, Elsevier, vol. 172(C), pages 333-342.
    6. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    7. Markus Brede, 2019. "How Does Active Participation Affect Consensus: Adaptive Network Model of Opinion Dynamics and Influence Maximizing Rewiring," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    8. Alexandru Topîrceanu, 2022. "Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    9. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Lapatinas, Athanasios & Garas, Antonios, 2016. "The role of networks in firms’ multi-characteristics competition and market-share inequality," MPRA Paper 68959, University Library of Munich, Germany.
    12. Babak Ravandi & Fatma Mili, 2019. "Coherence and polarization in complex networks," Journal of Computational Social Science, Springer, vol. 2(2), pages 133-150, July.
    13. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    14. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    15. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    16. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    17. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    18. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    19. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    20. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.