IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119321041.html
   My bibliography  Save this article

Diffusion–reaction approach to electronic relaxation in solution. An alternative simple derivation for two state model with a Dirac delta function coupling

Author

Listed:
  • Mudra, Swati
  • Chakraborty, Aniruddha

Abstract

We give a very simple method for finding the exact analytical solution for the problem of electronic relaxation in solution, modeled by a particle undergoing diffusive motion under the influence of two potentials and the coupling between two potentials is assumed to be represented by Dirac delta function of arbitrary strength and position. Diffusive motion on both the potentials are described by Smoluchowski equation. Green’s function method has been used to solve the coupled equations. The solution requires expression of the Green’s function for the motion in isolated potentials. We apply our method to the case of coupled parabolic potentials.

Suggested Citation

  • Mudra, Swati & Chakraborty, Aniruddha, 2020. "Diffusion–reaction approach to electronic relaxation in solution. An alternative simple derivation for two state model with a Dirac delta function coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321041
    DOI: 10.1016/j.physa.2019.123779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321041
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.