IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119320989.html
   My bibliography  Save this article

A null model for Dunbar’s circles

Author

Listed:
  • Jiménez-Martín, Manuel
  • Santalla, Silvia N.
  • Rodríguez-Laguna, Javier
  • Korutcheva, Elka

Abstract

An individual’s social group may be represented by their ego-network, formed by the links between the individual and their acquaintances. Ego-networks present an internal structure of increasingly large nested layers (or circles) of decreasing relationship intensity, whose size exhibits a precise scaling ratio. Starting from the notion of limited social bandwidth, and assuming fixed costs for the links in each layer, we propose a null model built on a grand-canonical ensemble that generates the observed hierarchical social structure. The observed internal structure of ego-networks becomes a natural outcome to expect when we assume the existence of layers demanding different amounts of resources. In the thermodynamic limit, reached when the number of ego-network copies is large, the specific layer degrees follow a Poisson distribution. We also find that, under certain conditions, equispaced layer costs are necessary to obtain a constant group size scaling. Our model presents interesting analogies to a Bose–Einstein gas, that we briefly discuss. Finally, we fit and compare the model with an empirical social network.

Suggested Citation

  • Jiménez-Martín, Manuel & Santalla, Silvia N. & Rodríguez-Laguna, Javier & Korutcheva, Elka, 2020. "A null model for Dunbar’s circles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320989
    DOI: 10.1016/j.physa.2019.123767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119320989
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.