IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119319120.html
   My bibliography  Save this article

Thermal free entanglement of a Λ -type three-level atom and bimodal photons in an optical cavity

Author

Listed:
  • Abbasi, M.R.

Abstract

Quantum entanglement is usually affected by the temperature and surrounding environment, thus it has been observed at low temperatures. The creation and manipulation of entanglement at finite temperatures is of crucial interest. To fulfill creating robust free (distillable) entanglement at finite temperatures, in this article, thermally-induced free entanglement of a Λ-type three-level atom and bimodal photons amid an optical lossless cavity, is investigated. We assume that the system is in thermal equilibrium with an environment thus the probabilities for finding the system in either of its eigenvalues are associated with the Boltzmann distribution. Introducing a conserved (Casimir) operator, a standard and effective procedure is then developed to calculate analytically the eigenvalues and eigenstates of the Hamiltonian, and thereby, to compute the thermal density operator and its partial transpose over atomic states. To justify the behavior of free (distillable) atom–photon entanglement, the quantitative form of Peres–Horodecki criteria, i.e. the negativity, is calculated. The analytical calculations show that the negativity vanishes at zero temperature, approaches to its maximum at a specific temperature and subsequently decreases asymptotically to zero. Furthermore, it is also illustrated that the maximum is larger for stronger atom–photon coupling while it decreases for greater atom–photon detuning. In addition, it is deduced from the representative figures that how the atom–photon structure parameters influence on the negativity.

Suggested Citation

  • Abbasi, M.R., 2020. "Thermal free entanglement of a Λ -type three-level atom and bimodal photons in an optical cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319120
    DOI: 10.1016/j.physa.2019.123424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319120
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.