IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119317637.html
   My bibliography  Save this article

Normal mode analysis of disordered random-matrix ensembles

Author

Listed:
  • Torres-Vargas, G.
  • Fossion, R.

Abstract

The statistics of random-matrix spectra can be very sensitive to the unfolding procedure that separates global from local properties. In order to avoid the introduction of possible artifacts, recently it has been applied to ergodic ensembles of Random Matrix Theory (RMT) the singular value decomposition (SVD) method, based on normal mode analysis, which characterizes the long-range correlations of the spectral fluctuations in a direct way without performing any unfolding. However, in the case of more general ensembles, the ergodicity property is often broken leading to ambiguities between spectrum-unfolded and ensemble-unfolded fluctuation statistics. Here, we apply SVD to a disordered random-matrix ensemble with tunable nonergodicity, as a mathematical framework to characterize the nonergodicity. We show that ensemble-averaged and individual-spectrum averaged statistics are calculated consistently using the same normal mode basis, and the nonergodicity is explained as a breakdown of this common basis.

Suggested Citation

  • Torres-Vargas, G. & Fossion, R., 2020. "Normal mode analysis of disordered random-matrix ensembles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119317637
    DOI: 10.1016/j.physa.2019.123128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317637
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119317637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.