IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics0378437119318916.html
   My bibliography  Save this article

Artificial Neural Network based computing model for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India

Author

Listed:
  • Navas, R Kaja Bantha
  • Prakash, S
  • Sasipraba, T

Abstract

The two main challenges of predicting the wind speed depend on various atmospheric factors and random variables. This paper explores the possibility of developing a wind speed prediction model using different Artificial Neural Networks (ANNs) and Categorical Regression empirical model which could be used to estimate the wind speed in Coimbatore, Tamil Nadu, India using SPSS software. The proposed Neural Network models are tested on real time wind data and enhanced with statistical capabilities. The objective is to predict accurate wind speed and to perform better in terms of minimization of errors using Multi Layer Perception Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN) and Categorical Regression (CATREG). Results from the paper have shown good agreement between the estimated and measured values of wind speed. According to the result, it can be concluded that ANN model with MLPNN could produce the acceptable prediction of the wind speed for given on wind direction.

Suggested Citation

  • Navas, R Kaja Bantha & Prakash, S & Sasipraba, T, 2020. "Artificial Neural Network based computing model for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318916
    DOI: 10.1016/j.physa.2019.123383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119318916
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    2. Stevanović, Mirjana & Vujičić, Slađana & Gajić, Aleksandar M., 2018. "Gross domestic product estimation based on electricity utilization by artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 28-31.
    3. Sarwar, Suleman & Chen, Wei & Waheed, Rida, 2017. "Electricity consumption, oil price and economic growth: Global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 9-18.
    4. Maria Grazia De Giorgi & Stefano Campilongo & Antonio Ficarella & Paolo Maria Congedo, 2014. "Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)," Energies, MDPI, vol. 7(8), pages 1-22, August.
    5. Ge, Fei & Ye, Bin & Xing, Shengnan & Wang, Bao & Sun, Shuang, 2017. "The analysis of the underlying reasons of the inconsistent relationship between economic growth and the consumption of electricity in China – A case study of Anhui province," Energy, Elsevier, vol. 128(C), pages 601-608.
    6. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    7. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    8. Jinliang Zhang & YiMing Wei & Zhong-fu Tan & Wang Ke & Wei Tian, 2017. "A Hybrid Method for Short-Term Wind Speed Forecasting," Sustainability, MDPI, vol. 9(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Joao Pereira Domingues MARTINHO, 2023. "Energy Crops: Assessments In The European Union Agricultural Regions Through Machine Learning Approaches," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 29-42, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    2. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    3. Stevanović, Mirjana & Vujičić, Slađana & Gajić, Aleksandar M., 2018. "Gross domestic product estimation based on electricity utilization by artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 28-31.
    4. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    5. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    6. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    7. Sohag, Kazi & Sokhanvar, Amin & Belyaeva, Zhanna & Mirnezami, Seyed Reza, 2022. "Hydrocarbon prices shocks, fiscal stability and consolidation: Evidence from Russian Federation," Resources Policy, Elsevier, vol. 76(C).
    8. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    9. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    10. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    11. Akram, Rabia & Chen, Fuzhong & Khalid, Fahad & Huang, Guanhua & Irfan, Muhammad, 2021. "Heterogeneous effects of energy efficiency and renewable energy on economic growth of BRICS countries: A fixed effect panel quantile regression analysis," Energy, Elsevier, vol. 215(PB).
    12. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    13. Ashutosh Dash & Sangram Keshari Jena & Aviral Kumar Tiwari & Shawkat Hammoudeh, 2022. "Dynamics between Power Consumption and Economic Growth at Aggregated and Disaggregated (Sectoral) Level Using the Frequency Domain Causality," JRFM, MDPI, vol. 15(5), pages 1-18, May.
    14. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    15. Salmanzadeh-Meydani, N. & Fatemi Ghomi, S.M.T., 2019. "The causal relationship among electricity consumption, economic growth and capital stock in Iran," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1230-1256.
    16. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    17. Wong, Jin Boon & Zhang, Qin, 2023. "Managerial performance and oil price shocks," Energy Economics, Elsevier, vol. 124(C).
    18. Husaini, Dzul Hadzwan & Puah, Chin-Hong & Lean, Hooi Hooi, 2019. "Energy subsidy and oil price fluctuation, and price behavior in Malaysia:A time series analysis," Energy, Elsevier, vol. 171(C), pages 1000-1008.
    19. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    20. Saidi, Samir & Mani, Venkatesh & Mefteh, Haifa & Shahbaz, Muhammad & Akhtar, Pervaiz, 2020. "Dynamic linkages between transport, logistics, foreign direct Investment, and economic growth: Empirical evidence from developing countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 277-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.