IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v541y2020ics0378437119315882.html
   My bibliography  Save this article

Epidemic outbreaks on random Voronoi–Delaunay triangulations

Author

Listed:
  • Alencar, D.S.M.
  • Alves, T.F.A.
  • Alves, G.A.
  • Macedo-Filho, A.
  • Ferreira, R.S.

Abstract

We study epidemic outbreaks on random Delaunay triangulations by applying the Asynchronous SIR (susceptible–infected–removed) dynamics coupled to two-dimensional Voronoi–Delaunay triangulations. In order to investigate the critical behavior of the model, we obtain the cluster size distribution by using Newman–Ziff algorithm, allowing to simulate random inhomogeneous lattices and measure any desired observable related to percolation. We numerically calculate the order parameter, defined as the wrapping cluster density, the mean cluster size, and Binder cumulant ratio defined for percolation in order to estimate the epidemic threshold. Our findings suggest that the system falls into two-dimensional dynamic percolation universality class and the quenched random disorder is irrelevant, in agreement with results for classical percolation.

Suggested Citation

  • Alencar, D.S.M. & Alves, T.F.A. & Alves, G.A. & Macedo-Filho, A. & Ferreira, R.S., 2020. "Epidemic outbreaks on random Voronoi–Delaunay triangulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  • Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119315882
    DOI: 10.1016/j.physa.2019.122800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315882
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119315882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.