IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119318011.html
   My bibliography  Save this article

Fall prediction based on key points of human bones

Author

Listed:
  • Xu, Qingzhen
  • Huang, Guangyi
  • Yu, Mengjing
  • Guo, Yanliang

Abstract

With the development of society, the number of old people is increasing. Slow response, osteoporosis and vision loss threaten the health of the elderly. The fall of this problem is an important factor that threatens the health of the elderly. In order to reduce the damage caused by falls, this paper based on the human skeleton map for fall prediction. First using OPENPOSE get the bone map and make it into a data set. Then using transfer learning to train the data set to get a new model Finally, the new model is used to predict the fall. The innovations in this paper are to take bone maps from 2D images and use bone maps to make fall predictions. The bone map is predicted using a convolutional neural network. The final experimental results show that the new model obtained through transfer learning has an accuracy rate of 91.7%. This result fully demonstrates the validity of the proposed model.

Suggested Citation

  • Xu, Qingzhen & Huang, Guangyi & Yu, Mengjing & Guo, Yanliang, 2020. "Fall prediction based on key points of human bones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119318011
    DOI: 10.1016/j.physa.2019.123205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119318011
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Fushan & Gao, Qingyong, 2016. "Blow-up of solution for a nonlinear Petrovsky type equation with memory," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 383-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengle Fang & Huiyu Xiang & Chongjie Leng & Jiayue Chen & Qian Yu, 2022. "Research on Real-Time Detection of Safety Harness Wearing of Workshop Personnel Based on YOLOv5 and OpenPose," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lishan Liu & Fenglong Sun & Yonghong Wu, 2020. "Finite time blow-up for a nonlinear viscoelastic Petrovsky equation with high initial energy," Partial Differential Equations and Applications, Springer, vol. 1(5), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119318011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.