IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119317406.html
   My bibliography  Save this article

Geometric phase of the one-dimensional Ising chain in a longitudinal field

Author

Listed:
  • Liao, Yi
  • Chen, Ping-Xing

Abstract

For the one-dimensional Ising chain with spin-1∕2 and exchange couple J in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, the nonzero BP which depends on the exchange couple and the field strength characterizes the corresponding symmetry breaking of parity and time reversal(PT). However, there seems to exist a topological phase transition for the one-dimensional Ising chain in a longitudinal field(LF) with the reduced field strength ϵ. If the LF is added at zero temperature, researchers believe that the LF also could influence the PT-symmetry and there exists the discontinuous BP. But the theoretic characterization has not been well founded. This paper tries to aim at this problem. With the Jordan–Wigner transformation, we give the four-fermion interaction form of the Hamiltonian in the one-dimensional Ising chain with a LF. Further by the method of Wick’s theorem and the mean-field theory, the four-fermion interaction is well dealt with. We solve the ground state energy and the ground wave function in the momentum space. We discuss the BP and suggest that there exist nonzero BPs when ϵ=0 in the paramagnetic case where J<0 and when −1<ϵ<1, in the diamagnetic case where J>0.

Suggested Citation

  • Liao, Yi & Chen, Ping-Xing, 2020. "Geometric phase of the one-dimensional Ising chain in a longitudinal field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317406
    DOI: 10.1016/j.physa.2019.123084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317406
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.