IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119306132.html
   My bibliography  Save this article

Supply and demand law under variable information

Author

Listed:
  • Yuan, Guanghui
  • Han, Jingti
  • Zhou, Lei
  • Liang, Hejun
  • Zhang, Yicheng

Abstract

When the product quality is limited and the information capability is variable, we propose the enterprise enhances corporate profits by changing the relationship between market demand and external resources. We assume that the information capacity can be changed through the input of external resources. In this paper, we present a research agenda that empowers external resources to transform consumer information capabilities and hence market demand. The result shows that the higher the quality of the product, the more market demand can be obtained by investing in external resources in the early stage. The research of this paper provides a set of models for enterprises to choose a better opportunity to promote their products according to the quality of their products or services, which will help enterprises achieve better returns in the short term.

Suggested Citation

  • Yuan, Guanghui & Han, Jingti & Zhou, Lei & Liang, Hejun & Zhang, Yicheng, 2019. "Supply and demand law under variable information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119306132
    DOI: 10.1016/j.physa.2019.04.240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119306132
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qianqian Li & Tao Yang & Erbo Zhao & Xing’ang Xia & Zhangang Han, 2013. "The Impacts of Information-Sharing Mechanisms on Spatial Market Formation Based on Agent-Based Modeling," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
    2. Liao, Hao & Xiao, Rui & Chen, Duanbing & Medo, Matúš & Zhang, Yi-Cheng, 2014. "Firm competition in a probabilistic framework of consumer choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 47-56.
    3. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    4. Szalay, Dezsö, 2008. "Monopoly, Non-linear Pricing, and Imperfect Information : A Reconsideration of the Insurance Market," The Warwick Economics Research Paper Series (TWERPS) 863, University of Warwick, Department of Economics.
    5. NEGOTIU Calin, 2012. "The Unknown / Known Economic And Financial Crisis," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 0(1), pages 549-553.
    6. Medo, Matúš & Zhang, Yi-Cheng, 2008. "Market model with heterogeneous buyers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2889-2908.
    7. Zhang, Yi-Cheng, 2005. "Supply and demand law under limited information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 500-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanghui Yuan & Zhiqiang Liu & Yaqiong Wang & Dongping Pu, 2023. "Market Demand Optimization Model Based on Information Perception Control," Mathematics, MDPI, vol. 11(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fujuan & Fenoaltea, Enrico Maria & Zhang, Yi-Cheng, 2023. "Market failure in a new model of platform design with partially informed consumers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    2. Tilles, Paulo F.C. & Ferreira, Fernando F. & Francisco, Gerson & Pereira, Carlos de B. & Sarti, Flavia M., 2011. "A Markovian model market—Akerlof’s lemons and the asymmetry of information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2562-2570.
    3. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    4. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    7. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    8. Li, Ling & Dong, Gaogao & Zhu, Huaiping & Tian, Lixin, 2024. "Impact of multiple doses of vaccination on epidemiological spread in multiple networks," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    9. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    10. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    12. Mingli Zheng & Chong Wang & Chaozheng Li, 2016. "Insurance Contracts with Adverse Selection When the Insurer Has Ambiguity about the Composition of the Consumers," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 179-206, May.
    13. Qianqian Li & Tao Yang & Erbo Zhao & Xing’ang Xia & Zhangang Han, 2013. "The Impacts of Information-Sharing Mechanisms on Spatial Market Formation Based on Agent-Based Modeling," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
    14. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    15. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    16. Xie, Yingkang & Wang, Zhen & Lu, Junwei & Li, Yuxia, 2020. "Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    17. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    19. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    20. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119306132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.