IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119305771.html
   My bibliography  Save this article

Exploring the dynamic relationship between crude oil price and implied volatility indices: A MF-DCCA approach

Author

Listed:
  • Cai, Yuxin
  • Lu, Xinsheng
  • Ren, Yongping
  • Qu, Ling

Abstract

This paper investigates the cross-correlation between crude oil prices and implied volatility indices — theinvestor’s fear gauges, using a cross-correlation statistical test and multifractal detrended cross-correlation analysis (MF-DCCA). The results show that the cross-correlations between crude oil prices and three different implied volatility indices are multifractal. By finding the “crossover”, we separate the three pairs of series into the short- and long-term, respectively, and find that the cross-correlations are strongly anti-persistent in both short- and long-term. Moreover, cross-correlations of small and large fluctuations are anti-persistent in the short- and long-term, suggesting that crude oil prices and implied volatility indices are susceptible to each other. We also find that the cross-correlation exponents are less than the average generalized Hurst exponent when q<0 and more than the average generalized Hurst exponent when q>0 in the short-term and that the opposite results are true in the long-term.

Suggested Citation

  • Cai, Yuxin & Lu, Xinsheng & Ren, Yongping & Qu, Ling, 2019. "Exploring the dynamic relationship between crude oil price and implied volatility indices: A MF-DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119305771
    DOI: 10.1016/j.physa.2019.04.209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119305771
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    2. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    3. Kantelhardt, Jan W. & Rybski, Diego & Zschiegner, Stephan A. & Braun, Peter & Koscielny-Bunde, Eva & Livina, Valerie & Havlin, Shlomo & Bunde, Armin, 2003. "Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 240-245.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. da Silva, Marcus Fernandes & Leão Pereira, Éder Johnson de Area & da Silva Filho, Aloisio Machado & Nunes de Castro, Arleys Pereira & Miranda, José Garcia Vivas & Zebende, Gilney Figueira, 2015. "Quantifying cross-correlation between Ibovespa and Brazilian blue-chips: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 124-129.
    6. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    7. Ruan, Qingsong & Jiang, Wei & Ma, Guofeng, 2016. "Cross-correlations between price and volume in Chinese gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 10-22.
    8. Li, Jianfeng & Lu, Xinsheng & Zhou, Ying, 2016. "Cross-correlations between crude oil and exchange markets for selected oil rich economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 131-143.
    9. Liu, Li & Wan, Jieqiu, 2011. "A study of correlations between crude oil spot and futures markets: A rolling sample test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3754-3766.
    10. Pal, Mayukha & Madhusudana Rao, P. & Manimaran, P., 2014. "Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 452-460.
    11. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    12. Lu, Xinsheng & Li, Jianfeng & Zhou, Ying & Qian, Yubo, 2017. "Cross-correlations between RMB exchange rate and international commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 168-182.
    13. Gvozdanovic, Igor & Podobnik, Boris & Wang, Duan & Eugene Stanley, H., 2012. "1/f behavior in cross-correlations between absolute returns in a US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2860-2866.
    14. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    15. Xi-Yuan Qian & Ya-Min Liu & Zhi-Qiang Jiang & Boris Podobnik & Wei-Xing Zhou & H. Eugene Stanley, 2015. "Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces," Papers 1504.02435, arXiv.org, revised Apr 2015.
    16. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    17. Ruan, Qingsong & Wang, Yao & Lu, Xinsheng & Qin, Jing, 2016. "Cross-correlations between Baltic Dry Index and crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 278-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Ben-Salha, Ousama & Mokni, Khaled, 2022. "Detrended cross-correlation analysis in quantiles between oil price and the US stock market," Energy, Elsevier, vol. 242(C).
    3. Wang, Jian & Shao, Wei & Ma, Chenmin & Chen, Wenbing & Kim, Junseok, 2021. "Co-movements between Shanghai Composite Index and some fund sectors in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Zhou, Hanchu & Chang, Fangrong, 2022. "The long-memory temporal dependence of traffic crash fatality for different types of road users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    2. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    3. Sun, Xinxin & Lu, Xinsheng & Yue, Gongzheng & Li, Jianfeng, 2017. "Cross-correlations between the US monetary policy, US dollar index and crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 326-344.
    4. Li, Wei & Lu, Xinsheng & Ren, Yongping & Zhou, Ying, 2018. "Dynamic relationship between RMB exchange rate index and stock market liquidity: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 726-739.
    5. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    7. Li, Shuping & Lu, Xinsheng & Liu, Xinghua, 2020. "Dynamic relationship between Chinese RMB exchange rate index and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    8. Lu, Xinsheng & Li, Jianfeng & Zhou, Ying & Qian, Yubo, 2017. "Cross-correlations between RMB exchange rate and international commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 168-182.
    9. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    10. Li, Jianfeng & Lu, Xinsheng & Jiang, Wei & Petrova, Vanya S., 2021. "Multifractal Cross-correlations between foreign exchange rates and interest rate spreads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Zhai, Lu-Sheng & Liu, Ruo-Yu, 2019. "Local detrended cross-correlation analysis for non-stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 222-233.
    12. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    14. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    15. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    16. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    17. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    18. Charutha, S. & Gopal Krishna, M. & Manimaran, P., 2020. "Multifractal analysis of Indian public sector enterprises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. Ruan, Qingsong & Jiang, Wei & Ma, Guofeng, 2016. "Cross-correlations between price and volume in Chinese gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 10-22.
    20. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119305771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.