IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics0378437119314529.html
   My bibliography  Save this article

Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms

Author

Listed:
  • Ozguven, Mehmet Metin
  • Adem, Kemal

Abstract

Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease.

Suggested Citation

  • Ozguven, Mehmet Metin & Adem, Kemal, 2019. "Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119314529
    DOI: 10.1016/j.physa.2019.122537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314529
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehmet Metin Ozguven, 2018. "The Newest Agricultural Technologies," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 5(1), pages 621-628, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Jaskulska & Jarosław Kamieniarz & Dariusz Jaskulski & Maja Radziemska & Martin Brtnický, 2023. "Fungicidal Protection as Part of the Integrated Cultivation of Sugar Beet: An Assessment of the Influence on Root Yield in a Long-Term Study," Agriculture, MDPI, vol. 13(7), pages 1-10, July.
    2. Balaji Natesan & Anandakumar Singaravelan & Jia-Lien Hsu & Yi-Hsien Lin & Baiying Lei & Chuan-Ming Liu, 2022. "Channel–Spatial Segmentation Network for Classifying Leaf Diseases," Agriculture, MDPI, vol. 12(11), pages 1-20, November.
    3. Vinay Gautam & Naresh K. Trivedi & Aman Singh & Heba G. Mohamed & Irene Delgado Noya & Preet Kaur & Nitin Goyal, 2022. "A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment," Sustainability, MDPI, vol. 14(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119314529. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.