IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312828.html
   My bibliography  Save this article

Langevin thermostat for robust configurational and kinetic sampling

Author

Listed:
  • Farago, Oded

Abstract

We reformulate the algorithm of Grønbech-Jensen and Farago (GJF) for Langevin dynamics simulations at constant temperature. The GJF algorithm has become increasingly popular in molecular dynamics simulations because it provides robust (i.e., insensitive to variations in the time step) and accurate configurational sampling of the phase space with larger time steps than other Langevin thermostats. In the original derivation (Grønbech-Jensen and Farago, 2013), the algorithm was formulated as a velocity-Verlet type integrator with an in-site velocity variable. Here, we reformulate it as a leap frog scheme with a half-step velocity variable. In contrast to the original form, the reforumlated one also provides robust and accurate estimations of kinetic measures such as the average kinetic energy. We analytically prove that the newly presented algorithm gives the exact configurational and kinetic temperatures of a harmonic oscillator for any time step smaller than the Verlet stability limit, and use computer simulations to demonstrate the configurational and kinetic robustness of the algorithm in strongly non-linear systems. This property of the new formulation of the GJF thermostat makes it very attractive for implementation in computer simulations.

Suggested Citation

  • Farago, Oded, 2019. "Langevin thermostat for robust configurational and kinetic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312828
    DOI: 10.1016/j.physa.2019.122210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312828
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.