IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119312117.html
   My bibliography  Save this article

Critical properties of a vector-mediated epidemic process

Author

Listed:
  • Santos, F.L.
  • Almeida, M.L.
  • Albuquerque, E.L.
  • Macedo-Filho, A.
  • Lyra, M.L.
  • Fulco, U.L.

Abstract

We study the critical behavior of an epidemic propagation model with interacting static individuals and diffusive vectors. The model presents a non-equilibrium phase transition from an absorbing vacuum state to an epidemic state at a critical vector density which depends on the recovery rates of infected individuals and vectors. The simulation was performed in a linear chain of the proposed model and the finite time scale hypothesis was explored to estimate the vector critical density and dynamic critical exponents. Our results show that the absorbing-state phase transition belongs to the universality class of the symmetric diffusive epidemic process irrespective to the relative values of the recovery rates. On the other hand, the critical vector density shows a much stronger dependence on the recovery rate of vectors than on the corresponding recovery rate of individuals.

Suggested Citation

  • Santos, F.L. & Almeida, M.L. & Albuquerque, E.L. & Macedo-Filho, A. & Lyra, M.L. & Fulco, U.L., 2019. "Critical properties of a vector-mediated epidemic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119312117
    DOI: 10.1016/j.physa.2019.122085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312117
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119312117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.