IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311963.html
   My bibliography  Save this article

Analysing exposure diversity in collaborative recommender systems—Entropy fusion approach

Author

Listed:
  • Latha, R.
  • Nadarajan, R.

Abstract

Recommender Systems are considered as essential business tools to leverage the potential growth of on-line services. Neighbourhood based collaborative filtering, a successful recommendation approach has mainly focused on improving accuracy of predictions. From user point of view, it is more valuable to obtain novel and diverse recommendations rather than monotonic preferences. Ratings given by a user for different categories of items are considered as a tool to access user exposure diversity which signifies his creative and divergent thinking. On the other hand, pair of items is concordant if highly correlated users agree in rating the items. Based on the user exposure diversity and item concordance, the neighbourhood selection process of item based collaborative recommender systems is refined. Rating predictions are made based on the newly selected neighbours. The performance of the proposed approach is investigated for accuracy and diversity of predictions on Movielens data sets. The results demonstrate that the proposed approach outperforms the state of the art recommendation approaches which address accuracy–diversity trade off. Statistical analysis is done to prove the efficiency of the proposed approach.

Suggested Citation

  • Latha, R. & Nadarajan, R., 2019. "Analysing exposure diversity in collaborative recommender systems—Entropy fusion approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311963
    DOI: 10.1016/j.physa.2019.122052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311963
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.