IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311926.html
   My bibliography  Save this article

Characteristic analysis of the pathway-based weighted network of hypertension-related genes

Author

Listed:
  • Hu, Jing-Bo
  • Wang, Huan
  • Wang, Le
  • Xu, Chuan-Yun
  • Cao, Ke-Fei
  • Zhang, Xu-Sheng

Abstract

Complex network is an effective approach for analyzing the complex interactions in diseases. Hypertension is a complex multifactorial disease involving multiple biological pathways and interactions between genetic and environmental factors. By combining network approach with biological knowledge, this study constructs a pathway-based weighted network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationships between genes; in this network model a weight is assigned to each edge in terms of the number of the same pathways in which the two nodes (genes) connected to the edge are involved. Analysis of statistical and topological characteristics shows that the edge weights are correlated to the network topology, and the edge weight distribution decays as a power-law. The disparity of the weights indicates that the edge weight distribution for the nodes with the same degree is of approximately equal weights; and the edges with the larger weights tend to connect with the higher degree nodes. By introducing an integrated ranking index that comprehensively reflect the contribution of the three indices of nodes (strength, degree, and number of pathways), eight key hub genes are identified by the threshold of integrated ranking index larger than 0.60: Jun, Cdk4, RT1-Da, Pdgfra, Fn1, Actg1, Cycs, and Creb3l2. These genes can be regarded as candidate genes or drug targets for further biological and medical research on their functions. This study provides a new strategy for exploring the underlying mechanisms of hypertension, and further evidences again that complex network is an excellent tool for the study of complex diseases.

Suggested Citation

  • Hu, Jing-Bo & Wang, Huan & Wang, Le & Xu, Chuan-Yun & Cao, Ke-Fei & Zhang, Xu-Sheng, 2019. "Characteristic analysis of the pathway-based weighted network of hypertension-related genes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311926
    DOI: 10.1016/j.physa.2019.122069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311926
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-Yan Zhang & Tian-Yuan He & Chuan-Yun Xu & Ke-Fei Cao & Xu-Sheng Zhang, 2023. "Theoretical investigation of the pathway-based network of type 2 diabetes mellitus-related genes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.