IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311914.html
   My bibliography  Save this article

Modularized tri-factor nonnegative matrix factorization for community detection enhancement

Author

Listed:
  • Yan, Chao
  • Chang, Zhenhai

Abstract

Community structure detection is a fundamental problem for understanding the relationship between the topology structures and the functions of complex networks. NMF-based models are a promising method for identifying communities from networks, but most of them require the number of communities in advance, which is inconvenient for real applications. Also, the basic NMF model could not reflect the characteristics of networks more comprehensively under the sole nonnegative constraint. In this paper, we develop a novel modularized tri-factor nonnegative matrix factorization model which combines the modularized information as the regularization term, leading to improved performance in community detection. Besides, we utilize general modularity density to determine the number of communities. Finally, the effectiveness of our approach is demonstrated on both synthetic and real-world networks.

Suggested Citation

  • Yan, Chao & Chang, Zhenhai, 2019. "Modularized tri-factor nonnegative matrix factorization for community detection enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311914
    DOI: 10.1016/j.physa.2019.122050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311914
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Chao & Chang, Zhenhai, 2020. "Modularized convex nonnegative matrix factorization for community detection in signed and unsigned networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.