IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311690.html
   My bibliography  Save this article

Dynamic vaccination game in a heterogeneous mixing population

Author

Listed:
  • Lu, Liqun
  • Ouyang, Yanfeng

Abstract

Opposition to vaccination has long been a non-negligible public health phenomenon resulted from people’s varied perceptions toward vaccination (e.g., vaccine-phobia). This paper investigates the voluntary vaccination behavior of a heterogeneous population during an epidemic outbreak, where each individual makes its own vaccination decision to minimize its expected disutility from both vaccine-phobia and the risk of infection. Such a problem is known as a vaccination game, as people’s vaccination decisions not only affect their own disutilities but those of all others through probabilistic disease transmissions. To study the vaccination game, the susceptible–infected–removed disease propagation process is generalized into a new epidemic dynamics model to allow dynamic vaccination and immunity activation in a heterogeneous mixing population. An efficient computation method is proposed to evaluate the final state of the dynamic epidemic system. Then, a classic game-theoretical equilibrium model is built upon these results to examine the impacts of people’s vaccination behavior on the overall risk of epidemic outbreak. A hypothetical case study is used to validate the dynamics model and the derived results, and extensive numerical experiments are conducted to identify the key factors that affect people’s vaccination decisions and the risk of an outbreak. Moreover, three alternative vaccination schemes are also studied to examine the effects of early and non-differential vaccination treatments, respectively.

Suggested Citation

  • Lu, Liqun & Ouyang, Yanfeng, 2019. "Dynamic vaccination game in a heterogeneous mixing population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311690
    DOI: 10.1016/j.physa.2019.122032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311690
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjia Liu & Jian Wang & Yanfeng Ouyang, 2022. "Rumor Transmission in Online Social Networks Under Nash Equilibrium of a Psychological Decision Game," Networks and Spatial Economics, Springer, vol. 22(4), pages 831-854, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.