IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311677.html
   My bibliography  Save this article

Effects of sine-Wiener noise on signal propagation in a randomly connected neural network

Author

Listed:
  • Zhao, Jia
  • Qin, Ying-Mei
  • Che, Yan-Qiu

Abstract

We investigate the effects of sine-Wiener (SW)-noise on signal propagation in a randomly connected neural network based on Izhikevich neuron model in detail, in which the axonal conduction delays of synapses, the linkage probability between neurons and the ratio between excitatory and inhibitory neurons of the network are set similarly with the mammalian neocortex. It is found that the SW-noise can enhance the propagation of weak signal in the network. Besides the parameters of SW-noise, the characteristic parameters of the network also play important roles in signal propagation. Furthermore, it is found that the neural network has its sensitive frequency that can optimally enhance the propagation of weak signal when the signal’s frequency is close to the network’s sensitive frequency. In summary, the results here suggest that the SW-noise with suitable self-correlation time and intensity can facilitate the propagation of weak signal in the randomly connected neural network.

Suggested Citation

  • Zhao, Jia & Qin, Ying-Mei & Che, Yan-Qiu, 2019. "Effects of sine-Wiener noise on signal propagation in a randomly connected neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311677
    DOI: 10.1016/j.physa.2019.122030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311677
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.