IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311550.html
   My bibliography  Save this article

Quantifying the correlation and prediction of daily happiness sentiment and stock return: The Case of Singapore

Author

Listed:
  • Zhao, Ruwei

Abstract

In this paper, with the newly emerged Twitter happiness index, we employ the VAR regression, linear, and nonlinear Granger causality tests to investigate the predictive correlations between daily happiness sentiment (DHS) and Singapore Straits Times Index (STI) stock performance indicators. The empirical results reveal that DHS presents significant predictability with future STI return. While, for the realized volatility, no compelling forecasting powers are detected. We also perform another two subsample tests as robustness checks. In general, the subsample results are in line with those of the full sample.

Suggested Citation

  • Zhao, Ruwei, 2019. "Quantifying the correlation and prediction of daily happiness sentiment and stock return: The Case of Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311550
    DOI: 10.1016/j.physa.2019.122020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311550
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steyn, Dimitri H. W. & Greyling, Talita & Rossouw, Stephanie & Mwamba, John M., 2020. "Sentiment, emotions and stock market predictability in developed and emerging markets," GLO Discussion Paper Series 502, Global Labor Organization (GLO).
    2. Chen, Wen-Yi & Chen, Mei-Ping, 2022. "Twitter’s daily happiness sentiment, economic policy uncertainty, and stock index fluctuations," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    3. Văn, Lê & Bảo, Nguyễn Khắc Quốc, 2022. "The relationship between global stock and precious metals under Covid-19 and happiness perspectives," Resources Policy, Elsevier, vol. 77(C).
    4. Wei, Jiangqiao & Ma, Zhe & Wang, Anjian & Li, Pengyuan & Sun, Xiaoyan & Yuan, Xiaojing & Hao, Hongchang & Jia, Hongxiang, 2022. "Multiscale nonlinear Granger causality and time-varying effect analysis of the relationship between iron ore futures and spot prices," Resources Policy, Elsevier, vol. 77(C).

    More about this item

    Keywords

    Twitter happiness index; Singapore Straits Times Index; VAR regression; Nonlinear Granger causality test;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.