IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119311306.html
   My bibliography  Save this article

Photon gas at the Planck scale within the doubly special relativity

Author

Listed:
  • Chung, W.S.
  • Gavrilik, A.M.
  • Nazarenko, A.V.

Abstract

Within the approach to doubly special relativity (DSR) suggested by Magueijo and Smolin, a new algebraically justified rule of so-called κ-addition for the energies of identical particles is proposed. This rule permits to introduce the nonlinear κ-dependent Hamiltonian for one-mode multi-photon (sub)system. On its base, with different modes treated as independent, the thermodynamics of black-body radiation is explored within DSR, and main thermodynamic quantities are obtained. In their derivation, we use both the analytical tools within mean field approximation (MFA) and numerical evaluations based on exact formulas. The entropy of one-mode subsystem turns out to be finite (bounded). Another unusual result is the existence of threshold temperature above which radiation is present. Specific features of the obtained results are explained and illustrated with a number of plots. Comparison with some works of relevance is given.

Suggested Citation

  • Chung, W.S. & Gavrilik, A.M. & Nazarenko, A.V., 2019. "Photon gas at the Planck scale within the doubly special relativity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311306
    DOI: 10.1016/j.physa.2019.121928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311306
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rovenchak, Andrij & Sobko, Bohdana, 2019. "Fugacity versus chemical potential in nonadditive generalizations of the ideal Fermi-gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119311306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.