IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v532y2019ics037843711930932x.html
   My bibliography  Save this article

Information dissemination in dynamic hypernetwork

Author

Listed:
  • Jiang, Xin
  • Wang, Zhiping
  • Liu, Wei

Abstract

Recently, the information diffusion models based on static hypernetworks have been proposed, in which the nodes and hyperedges represent the individuals and the social groups consisting of several individuals, respectively. However, the social networks represented by hypernetwork should be a dynamic network because of social activities. Hence, we establish an SIS model to present the dynamics of information spreading in a dynamic social hypernetworks with three dynamic processes. Then the theoretical analysis and simulation of the model are carried out, and theoretical results are accordant with the simulation results. In addition, the effects of different parameters on the information dissemination dynamics are analyzed in RP and CP strategy respectively. Most noteworthy, reorganization of social relations leads to a decrease in the proportion of informed individuals in stable state. By analyzing the effect of hyperedge reorganization on hyperdegree distribution, we discover the reorganization result in the increasing number of isolated nodes. These isolated nodes is hard to be joined in new social relationships, and cannot get information from the social network.

Suggested Citation

  • Jiang, Xin & Wang, Zhiping & Liu, Wei, 2019. "Information dissemination in dynamic hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
  • Handle: RePEc:eee:phsmap:v:532:y:2019:i:c:s037843711930932x
    DOI: 10.1016/j.physa.2019.121578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930932X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    2. Haosen Wang & Qingtao Pan & Jun Tang, 2024. "HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
    3. Yu, Ping & Wang, Zhiping & Wang, Peiwen & Yin, Haofei & Wang, Jia, 2022. "Dynamic evolution of shipping network based on hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Liu, Jiawei & Ding, Jie, 2020. "Requesting for retweeting or donating? A research on how the fundraiser seeks help in the social charitable crowdfunding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    5. Ping Yu & Zhiping Wang & Yanan Sun & Peiwen Wang, 2022. "Risk Diffusion and Control under Uncertain Information Based on Hypernetwork," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    6. Wang, Zhiping & Yin, Haofei & Jiang, Xin, 2020. "Exploring the dynamic growth mechanism of social networks using evolutionary hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    7. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Zhang, Dezhi & Zhang, Fangtao & Liang, Yijing, 2021. "An evolutionary model of the international logistics network based on the Belt and Road perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:532:y:2019:i:c:s037843711930932x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.