IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v529y2019ics0378437119309033.html
   My bibliography  Save this article

Linnik Lévy process and some extensions

Author

Listed:
  • Kumar, A.
  • Maheshwari, A.
  • Wyłomańska, A.

Abstract

In the literature, the Linnik, Mittag-Leffler, Laplace and asymmetric Laplace distributions are the most known examples of geometric stable distributions. The geometric stable distributions are especially useful in the modeling of leptokurtic data with heavy-tailed behavior. They have found many interesting applications in the modeling of several physical phenomena and financial time-series. In this paper, we define the Linnik Lévy process (LLP) through the subordination of symmetric stable Lévy motion with gamma process. We discuss main properties of LLP like probability density function, Lévy measure and asymptotic forms of marginal densities. We also consider the governing fractional-type Fokker–Planck equation. To show practical applications, we simulate the sample paths of the introduced process. Moreover, we give a step-by-step procedure of the parameters estimation and calibrate the parameters of the LLP with the Arconic Inc equity data taken from Yahoo finance. Further, some extensions of the introduced process are also discussed.

Suggested Citation

  • Kumar, A. & Maheshwari, A. & Wyłomańska, A., 2019. "Linnik Lévy process and some extensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
  • Handle: RePEc:eee:phsmap:v:529:y:2019:i:c:s0378437119309033
    DOI: 10.1016/j.physa.2019.121539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119309033
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:529:y:2019:i:c:s0378437119309033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.