IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119308052.html
   My bibliography  Save this article

Backward bifurcation and stability analysis of a network-based SIS epidemic model with saturated treatment function

Author

Listed:
  • Huang, Yi-Jie
  • Li, Chun-Hsien

Abstract

In this paper, we present a study on a network-based SIS epidemic model with a saturated treatment function to characterize the saturation phenomenon of limited medical resources. In this model, we first obtain a threshold value R0, which is the threshold condition for the stability of the disease-free equilibrium. We show that a backward bifurcation occurs under certain conditions. More precisely, the saturated treatment function leads to a such bifurcation. In this case, R0<1 is not sufficient to eradicate the disease from the population. Furthermore, we also study the stability of the endemic equilibrium and the corresponding stability condition is given. Numerical experiments are conducted and their results validate the theoretical results.

Suggested Citation

  • Huang, Yi-Jie & Li, Chun-Hsien, 2019. "Backward bifurcation and stability analysis of a network-based SIS epidemic model with saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119308052
    DOI: 10.1016/j.physa.2019.121407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119308052
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jiaying & Zhao, Yi & Ye, Yong, 2022. "Complex dynamics and control strategies of SEIR heterogeneous network model with saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    2. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Khatun, Mst Sebi & Mahato, Kiriti Bhusan & Das, Pritha, 2024. "Dynamics of an SuSaV IR epidemic model with stochastic optimal control and awareness programs," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119308052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.