IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119307204.html
   My bibliography  Save this article

A polymer model of bacterial supercoiled DNA including structural transitions of the double helix

Author

Listed:
  • Lepage, Thibaut
  • Junier, Ivan

Abstract

DNA supercoiling, the under or overwinding of DNA, is a key physical mechanism both participating to compaction of bacterial genomes and making genomic sequences adopt various structural forms. DNA supercoiling may lead to the formation of braided superstructures (plectonemes), or it may locally destabilize canonical B-DNA to generate denaturation bubbles, left-handed Z-DNA and other functional alternative forms. Prediction of the relative fraction of these structures has been limited because of a lack of predictive polymer models that can capture the multiscale properties of long DNA molecules. In this work, we address this issue by extending the self-avoiding rod-like chain model of DNA so that every site of the chain is allocated with an additional structural degree of freedom reflecting variations of DNA forms. Efficient simulations of the model reveal its relevancy to capture multiscale properties of long chains (here up to 21 kb) as reported in magnetic tweezers experiments. Well-controlled approximations further lead to accurate analytical estimations of thermodynamic properties in the high force regime, providing, in combination with experiments, a simple, yet powerful framework to infer physical parameters describing alternative forms. In this regard, using simulated data, we find that extension curves at forces above 2 pN may lead, alone, to erroneous parameter estimations as a consequence of an underdetermination problem. We thus revisit published data in light of these findings and discuss the relevancy of previously proposed sets of parameters for both denatured and left-handed DNA forms. Altogether, our work paves the way for a scalable quantitative model of bacterial DNA.

Suggested Citation

  • Lepage, Thibaut & Junier, Ivan, 2019. "A polymer model of bacterial supercoiled DNA including structural transitions of the double helix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307204
    DOI: 10.1016/j.physa.2019.121196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119307204
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lara Connolley & Lucas Schnabel & Martin Thanbichler & Seán M. Murray, 2023. "Partition complex structure can arise from sliding and bridging of ParB dimers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.