IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119306648.html
   My bibliography  Save this article

SCE: Subspace-based core expansion method for community detection in complex networks

Author

Listed:
  • Mohammadi, Mehrnoush
  • Moradi, Parham
  • Jalili, Mahdi

Abstract

Community detection is a way to understand the mesoscale characteristics of networked systems and has received much attention recently. Most existing community detection methods suffer from several problems including; weak stability due to employing a randomness factor, requiring the number of communities before starting the community identification process, and unable to recognize communities of various sizes. To overcome these challenges, in this paper a novel subspace-based core expansion method is proposed for identifying non-overlapping communities. The proposed method consists of three main steps. In the first step, the graph is mapped to a low dimensional space using a linear sparse coding method. The main idea behind the mapping strategy is that each data point within a combination of subspaces can be represented as a linear combination of other points. In the second step, a novel node ranking strategy is developed to calculate the goodness of nodes to be considered in identifying community cores. Finally, a novel label propagation mechanism is proposed to form final communities. Several experiments are performed to evaluate the effectiveness of the proposed method on real and synthetic networks. Obtained results reveal the better performance of the proposed method compared to some baseline and state-of-the-art community detection methods.

Suggested Citation

  • Mohammadi, Mehrnoush & Moradi, Parham & Jalili, Mahdi, 2019. "SCE: Subspace-based core expansion method for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119306648
    DOI: 10.1016/j.physa.2019.121084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119306648
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119306648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.