IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v526y2019ics0378437119306363.html
   My bibliography  Save this article

Emergence of correlations between securities at short time scales

Author

Listed:
  • Valeyre, Sebastien
  • Grebenkov, Denis S.
  • Aboura, Sofiane

Abstract

The correlation matrix is the key element in optimal portfolio allocation and risk management. In particular, the eigenvectors of the correlation matrix corresponding to large eigenvalues can be used to identify the market mode, sectors and style factors. We investigate how these eigenvalues depend on the time scale of securities returns in the U.S. market. For this purpose, one-minute returns of the largest 533 U.S. stocks are aggregated at different time scales and used to estimate the correlation matrix and its spectral properties. We reveal the emergence of several dominant eigenvalues as the time scale increases. A simple lead–lag factor model is proposed to capture and reproduce the observed time-scale dependence of eigenvalues. Using this model, the relaxation time of the eigenvalues emergence is estimated to be around one minute for all the dominant eigenmodes, including the market mode. As a consequence, the use of five-minute returns time series for inferring correlations between stocks turns out to be a good compromise between statistical abundance of data points and well-established correlations. Our findings evidence that the underlying economic and financial mechanisms determining the correlation structure of securities depend as well on time scales.

Suggested Citation

  • Valeyre, Sebastien & Grebenkov, Denis S. & Aboura, Sofiane, 2019. "Emergence of correlations between securities at short time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
  • Handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119306363
    DOI: 10.1016/j.physa.2019.04.262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119306363
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2020. "Lead–lag relationships in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Polovnikov, Kirill & Kazakov, Vlad & Syntulsky, Sergey, 2020. "Core–periphery organization of the cryptocurrency market inferred by the modularity operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119306363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.