IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v526y2019ics0378437119305060.html
   My bibliography  Save this article

Complexity in the muscular blood vessel model with variable fractional derivative and external disturbances

Author

Listed:
  • He, Shaobo
  • Fataf, N.A.A.
  • Banerjee, Santo
  • Sun, Kehui

Abstract

In this paper, a variable fractional-order muscular blood vessel system under the influence of different external disturbances is proposed. Specifically, those external disturbances includes periodic forces, stochastic signal and time delay force. Its dynamical analysis is then carried out by employing the bifurcation diagram and phase portraits. Meanwhile, multiscale C0 complexity measure and multiscale 0–1 test are applied to analyze complexity and to detect chaos. It shows that the multiscale coarse graining process deduces better analysis results. Rich dynamics and high complexity are found in the system. Specifically, the noise and non-constant derivative order functions make the system more complex such that the risk of vascular disease is increased. It provides a reference for understanding the vascular disease with complex external disturbances.

Suggested Citation

  • He, Shaobo & Fataf, N.A.A. & Banerjee, Santo & Sun, Kehui, 2019. "Complexity in the muscular blood vessel model with variable fractional derivative and external disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
  • Handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119305060
    DOI: 10.1016/j.physa.2019.04.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119305060
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Parthasakha & Mukherjee, Sayan & Das, Pritha, 2019. "An investigation on Michaelis - Menten kinetics based complex dynamics of tumor - immune interaction," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 297-305.
    2. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Maiti, S. & Shaw, S. & Shit, G.C., 2020. "Caputo–Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119305060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.