IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v524y2019icp362-374.html
   My bibliography  Save this article

Impact of structural balance on Self-Avoiding Pruning Walk

Author

Listed:
  • Qu, Cunquan
  • Wang, Huijuan

Abstract

In a signed network, nodes are connected by two types of logically contradictory links: positive and negative links. These two types of links may play different roles in a dynamic process. In many real-world signed networks, the number of balanced triangles (those that have an odd number of positive links) is higher than that of unbalanced triangles. We refer to the structural balance as the fraction of balanced triangles. In this work, we explore how the structural balance influences a dynamic process. We consider the Self-Avoiding Pruning (SAP) Walk on a signed network which has been recently proposed to model, e.g., a consumer’s purchase behavior on a signed product network, where two products can be complementary or competitive with each other (Wang et al., 2017). First, we propose a model to generate signed networks with a given unsigned network topology, a given desired percentage of positive links and structural balance. Second, we design a sign flipping algorithm that could tune the structural balance of a given signed network without changing the percentage of positive links and the underlying topology. Finally, by using both the signed network models and the signed flipped real-world signed networks, we unravel and explain the effect of structural balance on the SAP walk features.

Suggested Citation

  • Qu, Cunquan & Wang, Huijuan, 2019. "Impact of structural balance on Self-Avoiding Pruning Walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 362-374.
  • Handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:362-374
    DOI: 10.1016/j.physa.2019.04.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930514X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng Liu & Daqing Li & Pengju Qin & Chaoran Liu & Huijuan Wang & Feilong Wang, 2015. "Epidemics in Interconnected Small-World Networks," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    2. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    3. Wang, Lingna & Sun, Mengfeng & Chen, Shanshan & Fu, Xinchu, 2016. "Epidemic spreading on one-way-coupled networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 280-288.
    4. Zhang, Jiaquan & Lu, Dan & Yang, Shunkun, 2017. "Comparison of two mean-field based theoretical analysis methods for SIS model," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 209-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:362-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.