IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v524y2019icp130-146.html
   My bibliography  Save this article

Partially polarized black-body radiation

Author

Listed:
  • Tomaschitz, Roman

Abstract

Angular temperature fluctuations in a photon gas generate fractional polarization of the black-body spectrum. The spectral density consists of two Planckians with different temperature variables representing orthogonal polarization states. The angular-dependent fluctuating temperature variables can be inferred from the Stokes parameters which have been measured, over the full solid angle, for the cosmic microwave background (CMB) radiation. The polarization matrix of a partially polarized photon gas is obtained by way of a unitary transformation of the annihilation and creation operators. The radiation is decomposed into a totally polarized and an unpolarized intensity component, and the polarization fraction is calculated, which is very small, of order ∼10−7, for the nearly isotropic CMB radiation. Spatial energy density autocorrelations induced by polarization and temperature anisotropy are derived and isotropized by an angular average. These correlations are long-range, exhibiting power-law decay ∝1∕r6 at large distance, and much stronger than the energy density correlation of an ideal photon gas which decays ∝1∕r8. As for the CMB radiation, the spatial energy density correlations are calculated from analytic Gaussian fits to the measured temperature and polarization power spectra, including the crossover from the short-distance regime to the asymptotic power-law decay.

Suggested Citation

  • Tomaschitz, Roman, 2019. "Partially polarized black-body radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 130-146.
  • Handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:130-146
    DOI: 10.1016/j.physa.2019.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930233X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomaschitz, Roman, 2020. "Multiply broken power-law densities as survival functions: An alternative to Pareto and lognormal fits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:130-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.