IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp172-179.html
   My bibliography  Save this article

Transient superdiffusive motion on a disordered ratchet potential

Author

Listed:
  • Zarlenga, D.G.
  • Frontini, G.L.
  • Family, Fereydoon
  • Arizmendi, C.M.

Abstract

The relationship between anomalous superdiffusive behavior and particle trapping probability is analyzed on a rocking ratchet potential with spatially correlated weak disorder. The trapping probability density is shown, analytically and numerically, to have an exponential form as a function of space. The trapping processes with a low or no thermal noise are only transient, but they can last much longer than the characteristic time scale of the system and therefore might be detected experimentally. Using the result for the trapping probability we obtain an analytical expression for the number of wells where a given number of particles are trapped. We have also obtained an analytical approximation for the second-moment of the particle distribution function C2 as a function of time, when trapped particles coexist with constant velocity untrapped particles. We also use the expression for C2 to characterize the anomalous superdiffusive motion in the absence of thermal noise for the transient time.

Suggested Citation

  • Zarlenga, D.G. & Frontini, G.L. & Family, Fereydoon & Arizmendi, C.M., 2019. "Transient superdiffusive motion on a disordered ratchet potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 172-179.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:172-179
    DOI: 10.1016/j.physa.2019.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930189X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Pardo & F. de la Cruz & P. L. Gammel & E. Bucher & D. J. Bishop, 1998. "Observation of smectic and moving-Bragg-glass phases in flowing vortex lattices," Nature, Nature, vol. 396(6709), pages 348-350, November.
    2. A. M. Troyanovski & J. Aarts & P. H. Kes, 1999. "Collective and plastic vortex motion in superconductors at high flux densities," Nature, Nature, vol. 399(6737), pages 665-668, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:172-179. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.