IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp1183-1201.html
   My bibliography  Save this article

Analytical and simulation studies of intersecting pedestrian flow on the 2D lattice with parallel update rule

Author

Listed:
  • Ding, Zhong-Jun
  • Huang, Yan-Hui
  • Liu, Teng
  • Ding, Jian-Xun
  • Hu, Wenting
  • Jiang, Rui
  • Wang, Bing-Hong

Abstract

The intersecting pedestrian flow on the 2D lattice with parallel update rule is studied. Each pedestrian has three moving directions without a back step. An intermediate phase has been found in which some pedestrians could move along the border of jamming stripes. A improved cluster mean field method has been proposed for the moving phase. A mean field analysis was also developed to analyze the intermediate phase. The analytical results agree with the simulation results well. The empty site moves along the interface of jamming stripes when the system only has one empty site. The average movement of empty site in each time step has been analyzed through the master equations.

Suggested Citation

  • Ding, Zhong-Jun & Huang, Yan-Hui & Liu, Teng & Ding, Jian-Xun & Hu, Wenting & Jiang, Rui & Wang, Bing-Hong, 2019. "Analytical and simulation studies of intersecting pedestrian flow on the 2D lattice with parallel update rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1183-1201.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1183-1201
    DOI: 10.1016/j.physa.2019.04.204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119305709
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1183-1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.