IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v521y2019icp146-172.html
   My bibliography  Save this article

Lattice Boltzmann method for natural convection of a Bingham fluid in a porous cavity

Author

Listed:
  • Kefayati, GH.R.

Abstract

In this paper, natural convection in a porous cavity filled with Bingham fluids has been simulated numerically. In order to study the problem, an innovative Lattice Boltzmann method for porous media of Bingham fluid is introduced. In this study, the Papanastasiou regularisation of the Bingham constitutive model has been applied for the studied Bingham fluid and moreover the Darcy–Brinkman–Forchheimer model has been employed for the porous media. Fluid flow, heat transfer, and yielded/unyielded parts have been conducted for certain pertinent parameters of Rayleigh number ( Ra=104 – 107), Darcy number (Da=10−2, 10−4, 10−6), and porosity (ϵ = 0.1 – 0.9). Moreover, the Bingham number (Bn) is studied in a wide range of different studied parameters. Results indicate that the heat transfer increases and the unyielded section diminishes as Rayleigh number rises. For specific Rayleigh and Darcy numbers, the increase in the Bingham number decreases the heat transfer. Furthermore, the growth of the Bingham number expands the unyielded sections in the cavity. Finally, for fixed Rayleigh and Bingham numbers, the unyielded region is decreased by the augmentation of the porosity. In addition, heat transfer augments gradually as the porosity increases.

Suggested Citation

  • Kefayati, GH.R., 2019. "Lattice Boltzmann method for natural convection of a Bingham fluid in a porous cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 146-172.
  • Handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:146-172
    DOI: 10.1016/j.physa.2019.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300366
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Serrano-Arellano & Juan M. Belman-Flores & Jesús Xamán & Karla M. Aguilar-Castro & Edgar V. Macías-Melo, 2020. "Numerical Study of the Double Diffusion Natural Convection inside a Closed Cavity with Heat and Pollutant Sources Placed near the Bottom Wall," Energies, MDPI, vol. 13(12), pages 1-17, June.
    2. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Siddabasappa, C. & Sakshath, T.N., 2021. "Effect of thermal non-equilibrium and internal heat source on Brinkman–Bénard convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:146-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.