IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp112-118.html
   My bibliography  Save this article

Community detection based on network communicability distance

Author

Listed:
  • Xu, Ying

Abstract

Community detection in complex networks is a topic of high interest in many fields. In this paper, we propose a new algorithm based on communicability distance for community detection in network(CD algorithm). Furthermore, the accuracy and efficiency of this algorithm are tested by some representative real-world networks and computer-generated networks(GN networks). The experimental results indicate that the CD algorithm can accurately and effectively detect the community structure in these networks with higher values of modularity.

Suggested Citation

  • Xu, Ying, 2019. "Community detection based on network communicability distance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 112-118.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:112-118
    DOI: 10.1016/j.physa.2018.09.191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313232
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Ying, 2020. "A spectral method to detect community structure based on the communicability modularity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    2. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    4. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    7. Fatemi, Samira & Salehi, Mostafa & Veisi, Hadi & Jalili, Mahdi, 2018. "A fuzzy logic based estimator for respondent driven sampling of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 42-51.
    8. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    10. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    11. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    12. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    14. Huang, Chung-Yuan & Chin, Wei-Chien-Benny & Fu, Yu-Hsiang & Tsai, Yu-Shiuan, 2019. "Beyond bond links in complex networks:Local bridges, global bridges and silk links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Cheng, Le & Li, Xianghua & Han, Zhen & Luo, Tengyun & Ma, Lianbo & Zhu, Peican, 2022. "Path-based multi-sources localization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    17. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    18. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    19. Hu, Fang & Liu, Jia & Li, Liuhuan & Liang, Jun, 2020. "Community detection in complex networks using Node2vec with spectral clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:112-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.