IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp325-332.html
   My bibliography  Save this article

Age preference of metrics for identifying significant nodes in growing citation networks

Author

Listed:
  • Ren, Zhuo-Ming

Abstract

Identifying significant works in the field of arts and sciences should avoid age preference. Recent research has shown that the time-balanced variant of the popular Google’s PageRank and degree for identifying significant works could provide an objective approach to eliminate the age preference in growing networks. However, a fundamental question remains open: How much performance capability do time-balanced metrics expect when they identify significant nodes in the growing networks? Through investigating of two large time-aggregated citations networks between movies procured from the Internet Movie Database and papers published on the journals of American Physical Society respectively, we analyze the age preference of several time-balanced metrics of PageRank and degree for identifying significant nodes in comparison.

Suggested Citation

  • Ren, Zhuo-Ming, 2019. "Age preference of metrics for identifying significant nodes in growing citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 325-332.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:325-332
    DOI: 10.1016/j.physa.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311257
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max Wasserman & Satyam Mukherjee & Konner Scott & Xiao Han T. Zeng & Filippo Radicchi & Luís A. N. Amaral, 2015. "Correlations between user voting data, budget, and box office for films in the internet movie database," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 858-868, April.
    2. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    3. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    4. Ren, Zhuo-Ming & Shi, Yu-Qiang & Liao, Hao, 2016. "Characterizing popularity dynamics of online videos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 236-241.
    5. Vaccario, Giacomo & Medo, Matúš & Wider, Nicolas & Mariani, Manuel Sebastian, 2017. "Quantifying and suppressing ranking bias in a large citation network," Journal of Informetrics, Elsevier, vol. 11(3), pages 766-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Chengli Zhao & Zhaolong Hu & Caixia Yu & Xiaojun Duan, 2022. "Revealing the character of journals in higher-order citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6315-6338, November.
    2. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    3. Monachary Kammari & Durga Bhavani S, 2023. "Time-stamp based network evolution model for citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3723-3741, June.
    4. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xipeng Liu & Xinmiao Li, 2024. "Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 2999-3021, June.
    2. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    3. Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.
    4. Zhou, Yanbo & Li, Qu & Yang, Xuhua & Cheng, Hongbing, 2021. "Predicting the popularity of scientific publications by an age-based diffusion model," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    6. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    7. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    8. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    9. Seh-Hyun Yoo & Chang-Yang Lee, 2023. "Technological diversification, technology portfolio properties, and R&D productivity," The Journal of Technology Transfer, Springer, vol. 48(6), pages 2074-2105, December.
    10. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    11. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    12. Yanbo Zhou & Xin-Li Xu & Xu-Hua Yang & Qu Li, 2022. "The influence of disruption on evaluating the scientific significance of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5931-5945, October.
    13. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    14. Vaccario, Giacomo & Medo, Matúš & Wider, Nicolas & Mariani, Manuel Sebastian, 2017. "Quantifying and suppressing ranking bias in a large citation network," Journal of Informetrics, Elsevier, vol. 11(3), pages 766-782.
    15. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    16. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    17. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    18. Fenghua Wang & Ying Fan & An Zeng & Zengru Di, 2019. "Can we predict ESI highly cited publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 109-125, January.
    19. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    20. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2018. "Author ranking evaluation at scale," Journal of Informetrics, Elsevier, vol. 12(3), pages 679-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:325-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.