IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v504y2018icp176-191.html
   My bibliography  Save this article

Stochastic thermodynamics: From principles to the cost of precision

Author

Listed:
  • Seifert, Udo

Abstract

In these lecture notes, the basic principles of stochastic thermodynamics are developed starting with a closed system in contact with a heat bath. A trajectory undergoes Markovian transitions between observable meso-states that correspond to a coarse-grained description of, e.g., a biomolecule or a biochemical network. By separating the closed system into a core system and into reservoirs for ligands and reactants that bind to, and react with the core system, a description as an open system controlled by chemical potentials and possibly an external force is achieved. Entropy production and further thermodynamic quantities defined along a trajectory obey various fluctuation theorems. For describing fluctuations in a non-equilibrium steady state in the long-time limit, the concept of a rate function for large deviations from the mean behavior is derived from the weight of a trajectory. Universal bounds on this rate function follow which prove and generalize the thermodynamic uncertainty relation that quantifies the inevitable trade-off between cost and precision of any biomolecular process. Specific illustrations are given for molecular motors, Brownian clocks and enzymatic networks that show how these tools can be used for thermodynamic inference of hidden properties of a system.

Suggested Citation

  • Seifert, Udo, 2018. "Stochastic thermodynamics: From principles to the cost of precision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 176-191.
  • Handle: RePEc:eee:phsmap:v:504:y:2018:i:c:p:176-191
    DOI: 10.1016/j.physa.2017.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117310348
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van den Broeck, C. & Esposito, M., 2015. "Ensemble and trajectory thermodynamics: A brief introduction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 418(C), pages 6-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wio, H.S. & Deza, J.I. & Sánchez, A.D. & García-García, R. & Gallego, R. & Revelli, J.A. & Deza, R.R., 2022. "The nonequilibrium potential today: A short review," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Giulio Chiribella & Fei Meng & Renato Renner & Man-Hong Yung, 2022. "The nonequilibrium cost of accurate information processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cleuren, Bart & Proesmans, Karel, 2020. "Stochastic impedance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    2. Goh, Segun & Woo, JunHyuk & Fortin, Jean-Yves & Choi, MooYoung, 2020. "Grand canonical description of equilibrium and non-equilibrium systems using spin formalism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Xiao, Bo & Li, Renfu, 2019. "Work fluctuation and its optimal extraction with time dependent harmonic potential from a non-Markovian bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 161-171.
    4. Yoshihiko Hasegawa, 2023. "Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Wio, H.S. & Deza, J.I. & Sánchez, A.D. & García-García, R. & Gallego, R. & Revelli, J.A. & Deza, R.R., 2022. "The nonequilibrium potential today: A short review," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Miguel Aguilera & Masanao Igarashi & Hideaki Shimazaki, 2023. "Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. L'eo Touzo & Matteo Marsili & Don Zagier, 2020. "Information thermodynamics of financial markets: the Glosten-Milgrom model," Papers 2010.01905, arXiv.org, revised Jan 2021.
    8. Chen, Xian & Jia, Chen, 2020. "Mathematical foundation of nonequilibrium fluctuation–dissipation theorems for inhomogeneous diffusion processes with unbounded coefficients," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 171-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:504:y:2018:i:c:p:176-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.