IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp345-355.html
   My bibliography  Save this article

GDPC: Gravitation-based Density Peaks Clustering algorithm

Author

Listed:
  • Jiang, Jianhua
  • Hao, Dehao
  • Chen, Yujun
  • Parmar, Milan
  • Li, Keqin

Abstract

The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

Suggested Citation

  • Jiang, Jianhua & Hao, Dehao & Chen, Yujun & Parmar, Milan & Li, Keqin, 2018. "GDPC: Gravitation-based Density Peaks Clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 345-355.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:345-355
    DOI: 10.1016/j.physa.2018.02.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301705
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Strehl & Joydeep Ghosh, 2003. "Relationship-Based Clustering and Visualization for High-Dimensional Data Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 208-230, May.
    2. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jianhua & Chen, Yujun & Hao, Dehao & Li, Keqin, 2019. "DPC-LG: Density peaks clustering based on logistic distribution and gravitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 25-35.
    2. Jiang, Jianhua & Chen, Yujun & Meng, Xianqiu & Wang, Limin & Li, Keqin, 2019. "A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 702-713.
    3. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    2. Cyrus Shahabi & Farnoush Banaei-Kashani, 2003. "Efficient and Anonymous Web-Usage Mining for Web Personalization," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 123-147, May.
    3. Wang, Jiang-Pan & Guo, Qiang & Yang, Guang-Yong & Liu, Jian-Guo, 2015. "Improved knowledge diffusion model based on the collaboration hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 250-256.
    4. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Jin, Wei-Xin & Song, Ping & Liu, Guo-Zhu & Stanley, H. Eugene, 2015. "The cascading vulnerability of the directed and weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 302-325.
    6. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Kaiquan Xu & Stephen Shaoyi Liao & Raymond Y. K. Lau & J. Leon Zhao, 2014. "Effective Active Learning Strategies for the Use of Large-Margin Classifiers in Semantic Annotation: An Optimal Parameter Discovery Perspective," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 461-483, August.
    8. Han, Jihui & Zhang, Ge & Dong, Gaogao & Zhao, Longfeng & Shi, Yuefeng & Zou, Yijiang, 2024. "Exact analysis of generalized degree-based percolation without memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    9. Tao Li & Yi Zhang & Dingding Wang & Jian Xu, 2019. "MCC: a Multiple Consensus Clustering Framework," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 414-434, October.
    10. Wang, Jian & Fang, Hongying & Qin, Xiaolin, 2019. "Targeted attack on correlated interdependent networks with dependency groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    11. Jiang, Jianhua & Chen, Yujun & Hao, Dehao & Li, Keqin, 2019. "DPC-LG: Density peaks clustering based on logistic distribution and gravitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 25-35.
    12. Bachmann, Ivana & Valdés, Valeria & Bustos-Jiménez, Javier & Bustos, Benjamin, 2022. "Effect of adding physical links on the robustness of the Internet modeled as a physical–logical interdependent network using simple strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    13. Du, Ruijin & Li, Jingjing & Dong, Gaogao & Tian, Lixin & Qing, Ting & Fang, Guochang & Dong, Yujuan, 2020. "Percolation analysis of urban air quality: A case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:345-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.