IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp65-74.html
   My bibliography  Save this article

Currency co-movement and network correlation structure of foreign exchange market

Author

Listed:
  • Mai, Yong
  • Chen, Huan
  • Zou, Jun-Zhong
  • Li, Sai-Ping

Abstract

We study the correlations of exchange rate volatility in the global foreign exchange(FX) market based on complex network graphs. Correlation matrices (CM) and the theoretical information flow method (Infomap) are employed to analyze the modular structure of the global foreign exchange network. The analysis demonstrates that there exist currency modules in the network, which is consistent with the geographical nature of currencies. The European and the East Asian currency modules in the FX network are most significant. We introduce a measure of the impact of individual currency based on its partial correlations with other currencies. We further incorporate an impact elimination method to filter out the impact of core nodes and construct subnetworks after the removal of these core nodes. The result reveals that (i) the US Dollar has prominent global influence on the FX market while the Euro has great impact on European currencies; (ii) the East Asian currency module is more strongly correlated than the European currency module. The strong correlation is a result of the strong co-movement of currencies in the region. The co-movement of currencies is further used to study the formation of international monetary bloc and the result is in good agreement with the consideration based on international trade.

Suggested Citation

  • Mai, Yong & Chen, Huan & Zou, Jun-Zhong & Li, Sai-Ping, 2018. "Currency co-movement and network correlation structure of foreign exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 65-74.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:65-74
    DOI: 10.1016/j.physa.2017.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117309603
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    2. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2020. "Lead–lag relationships in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    4. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    5. Zuzana Rowland & George Lazaroiu & Ivana Podhorská, 2020. "Use of Neural Networks to Accommodate Seasonal Fluctuations When Equalizing Time Series for the CZK/RMB Exchange Rate," Risks, MDPI, vol. 9(1), pages 1-21, December.
    6. Marek Vochozka & Jakub Horák & Petr Šuleř, 2019. "Equalizing Seasonal Time Series Using Artificial Neural Networks in Predicting the Euro–Yuan Exchange Rate," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2023. "Does economic policy uncertainty drive the dynamic spillover among traditional currencies and cryptocurrencies? The role of the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Jiang, Xue & Li, Sai-Ping & Mai, Yong & Tian, Tao, 2022. "Study of multinational currency co-movement and exchange rate stability base on network game," Finance Research Letters, Elsevier, vol. 47(PA).
    9. Anokye M. Adam & Kwabena Kyei & Simiso Moyo & Ryan Gill & Emmanuel N. Gyamfi, 2022. "Multifrequency network for SADC exchange rate markets using EEMD-based DCCA," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(1), pages 145-166, January.
    10. Yang, Ming-Yuan & Wu, Zhen-Guo & Wu, Xin, 2022. "An empirical study of risk diffusion in the cryptocurrency market based on the network analysis," Finance Research Letters, Elsevier, vol. 50(C).
    11. Xin Yang & Shigang Wen & Zhifeng Liu & Cai Li & Chuangxia Huang, 2019. "Dynamic Properties of Foreign Exchange Complex Network," Mathematics, MDPI, vol. 7(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:65-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.