IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp517-523.html
   My bibliography  Save this article

Persistent stability of a chaotic system

Author

Listed:
  • Huber, Greg
  • Pradas, Marc
  • Pumir, Alain
  • Wilkinson, Michael

Abstract

We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has ‘generic’ instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.

Suggested Citation

  • Huber, Greg & Pradas, Marc & Pumir, Alain & Wilkinson, Michael, 2018. "Persistent stability of a chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 517-523.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:517-523
    DOI: 10.1016/j.physa.2017.10.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711731052X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.10.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jufeng & Zhou, MengChu & Liu, Chunfeng, 2018. "Stochastic stability of Markovian jump linear systems over networks with random quantization density and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1128-1139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:517-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.