IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp803-807.html
   My bibliography  Save this article

Cellular automaton for migration in ecosystem: Application of traffic model to a predator–prey system

Author

Listed:
  • Nagatani, Takashi
  • Tainaka, Kei-ichi

Abstract

In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.

Suggested Citation

  • Nagatani, Takashi & Tainaka, Kei-ichi, 2018. "Cellular automaton for migration in ecosystem: Application of traffic model to a predator–prey system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 803-807.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:803-807
    DOI: 10.1016/j.physa.2017.08.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117308749
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:803-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.