IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp231-249.html
   My bibliography  Save this article

Reliability estimation of a N-M-cold-standby redundancy system in a multicomponent stress–strength model with generalized half-logistic distribution

Author

Listed:
  • Liu, Yiming
  • Shi, Yimin
  • Bai, Xuchao
  • Zhan, Pei

Abstract

In this paper, we study the estimation for the reliability of a multicomponent system, named N-M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.

Suggested Citation

  • Liu, Yiming & Shi, Yimin & Bai, Xuchao & Zhan, Pei, 2018. "Reliability estimation of a N-M-cold-standby redundancy system in a multicomponent stress–strength model with generalized half-logistic distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 231-249.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:231-249
    DOI: 10.1016/j.physa.2017.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307616
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    2. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    3. D. K. Al-Mutairi & M. E. Ghitany & Debasis Kundu, 2015. "Inferences on Stress-Strength Reliability from Weighted Lindley Distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(19), pages 4096-4113, October.
    4. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    5. Ke, Jyh-Bin & Lee, Wen-Chiung & Wang, Kuo-Hsiung, 2007. "Reliability and sensitivity analysis of a system with multiple unreliable service stations and standby switching failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 455-469.
    6. Gupta, Ramesh C. & Ghitany, M.E. & Al-Mutairi, D.K., 2012. "Estimation of reliability in a parallel system with random sample size," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 44-55.
    7. Shirin Shoaee & Esmaile Khorram, 2015. "Stress-Strength Reliability of a Two-Parameter Bathtub-shaped Lifetime Distribution Based on Progressively Censored Samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(24), pages 5306-5328, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    2. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    3. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    4. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    5. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    6. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    7. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    8. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    9. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    10. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    11. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    12. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    13. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    14. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    15. Fu, Jiayu & Xu, Ancha & Tang, Yincai, 2012. "Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1829-1836.
    16. Conghua Cheng & Jinyuan Chen & Jianming Bai, 2013. "Exact inferences of the two-parameter exponential distribution and Pareto distribution with censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1464-1479, July.
    17. Mansour Shrahili & Naif Alotaibi & Devendra Kumar & Salem A. Alyami, 2020. "Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    18. Sen, Ananda & Kannan, Nandini & Kundu, Debasis, 2013. "Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 108-121.
    19. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    20. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:231-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.