IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v484y2017icp532-557.html
   My bibliography  Save this article

Diffusive Boltzmann equation, its fluid dynamics, Couette flow and Knudsen layers

Author

Listed:
  • Abramov, Rafail V.

Abstract

In the current work we construct a multimolecule random process which leads to the Boltzmann equation in the appropriate limit, and which is different from the deterministic real gas dynamics process. We approximate the statistical difference between the two processes via a suitable diffusion process, which is obtained in the multiscale homogenization limit. The resulting Boltzmann equation acquires a new spatially diffusive term, which subsequently manifests in the corresponding fluid dynamics equations. We test the Navier–Stokes and Grad closures of the diffusive fluid dynamics equations in the numerical experiments with the Couette flow for argon and nitrogen, and compare the results with the corresponding Direct Simulation Monte Carlo (DSMC) computations. We discover that the full-fledged Knudsen velocity boundary layers develop with all tested closures when the viscosity and diffusivity are appropriately scaled in the vicinity of the walls. Additionally, we find that the component of the heat flux parallel to the direction of the flow is comparable in magnitude to its transversal component near the walls, and that the nonequilibrium Grad closure approximates this parallel heat flux with good accuracy.

Suggested Citation

  • Abramov, Rafail V., 2017. "Diffusive Boltzmann equation, its fluid dynamics, Couette flow and Knudsen layers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 532-557.
  • Handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:532-557
    DOI: 10.1016/j.physa.2017.04.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304594
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brenner, Howard, 2005. "Kinematics of volume transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(1), pages 11-59.
    2. Brenner, Howard, 2006. "Fluid mechanics revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 190-224.
    3. Brenner, Howard, 2005. "Navier–Stokes revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(1), pages 60-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafail V. Abramov, 2019. "The Random Gas of Hard Spheres," J, MDPI, vol. 2(2), pages 1-44, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brenner, Howard, 2013. "Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 558-566.
    2. Brenner, Howard, 2011. "Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier–Stokes–Fourier equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3216-3244.
    3. Janusz Badur & Michel Feidt & Paweł Ziółkowski, 2020. "Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics," Energies, MDPI, vol. 13(7), pages 1-34, April.
    4. Svärd, Magnus, 2018. "A new Eulerian model for viscous and heat conducting compressible flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 350-375.
    5. Bardow, André & Christian Öttinger, Hans, 2007. "Consequences of the Brenner modification to the Navier–Stokes equations for dynamic light scattering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 88-96.
    6. Yuan, Yudong & Rahman, Sheik, 2016. "Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 25-36.
    7. Bringuier, E., 2012. "Transport of volume in a binary liquid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5064-5075.
    8. Brenner, Howard, 2010. "Bi-velocity transport processes. Single-component liquid and gaseous continua," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1297-1316.
    9. Brenner, Howard, 2012. "An example illustrating the incompleteness of the Navier–Stokes–Fourier equations for thermally compressible fluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 966-978.
    10. Calgaro, Caterina & Creusé, Emmanuel & Goudon, Thierry & Krell, Stella, 2017. "Simulations of non homogeneous viscous flows with incompressibility constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 201-225.
    11. Dadzie, S. Kokou & Reese, Jason M. & McInnes, Colin R., 2008. "A continuum model of gas flows with localized density variations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6079-6094.
    12. Brenner, Howard, 2010. "Diffuse volume transport in fluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4026-4045.
    13. Brenner, Howard, 2011. "Derivation of constitutive data for flowing fluids from comparable data for quiescent fluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3645-3661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:532-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.