IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v484y2017icp358-366.html
   My bibliography  Save this article

Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks

Author

Listed:
  • Xu, Qiang
  • Xu, Zezhong
  • Li, Li
  • Zheng, Yan

Abstract

Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.

Suggested Citation

  • Xu, Qiang & Xu, Zezhong & Li, Li & Zheng, Yan, 2017. "Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 358-366.
  • Handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:358-366
    DOI: 10.1016/j.physa.2017.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117305009
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:484:y:2017:i:c:p:358-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.