IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp486-500.html
   My bibliography  Save this article

Stable Lévy motion with inverse Gaussian subordinator

Author

Listed:
  • Kumar, A.
  • Wyłomańska, A.
  • Gajda, J.

Abstract

In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.

Suggested Citation

  • Kumar, A. & Wyłomańska, A. & Gajda, J., 2017. "Stable Lévy motion with inverse Gaussian subordinator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 486-500.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:486-500
    DOI: 10.1016/j.physa.2017.04.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711730403X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poitras, Geoffrey, 2018. "The pre-history of econophysics and the history of economics: Boltzmann versus the marginalists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 89-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:486-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.