IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp147-157.html
   My bibliography  Save this article

Eb&D: A new clustering approach for signed social networks based on both edge-betweenness centrality and density of subgraphs

Author

Listed:
  • Qi, Xingqin
  • Song, Huimin
  • Wu, Jianliang
  • Fuller, Edgar
  • Luo, Rong
  • Zhang, Cun-Quan

Abstract

Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb&D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb&D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb&D compared with other methods is that the number of clusters do not need to be known prior.

Suggested Citation

  • Qi, Xingqin & Song, Huimin & Wu, Jianliang & Fuller, Edgar & Luo, Rong & Zhang, Cun-Quan, 2017. "Eb&D: A new clustering approach for signed social networks based on both edge-betweenness centrality and density of subgraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 147-157.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:147-157
    DOI: 10.1016/j.physa.2017.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303400
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:147-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.